Sideband patterns from rotor-encoded longitudinal magnetization in MAS recoupling experiments.
نویسندگان
چکیده
Recent multiple-quantum MAS NMR experiments have shown that a change in the rotor phase (and, hence, in the Hamiltonian) between the excitation and reconversion periods can lead to informative spinning-sideband patterns. However, such "rotor encoding" is not limited to multiple-quantum experiments. Here it is shown that longitudinal magnetization can also be rotor-encoded. Both homonuclear and heteronuclear rotor encoding of longitudinal magnetization (RELM) experiments are performed on dipolar-coupled spin-1/2 systems, and the corresponding sideband patterns in the indirect dimension are analyzed. In both cases, only even-order sidebands are produced, and their intensity distribution depends on the durations of the recoupling periods. In heteronuclear experiments using REDOR-type recoupling, purely dipolar sideband patterns that are entirely free of effects due to the chemical-shielding anisotropy can be generated. Advantages and disadvantages of the heteronuclear RELM experiment are discussed in the context of other methods used to measure heteronuclear dipolar couplings.
منابع مشابه
Dipolar recoupling in solid state NMR by phase alternating pulse sequences.
We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made gamma encoded. The proposed methodol...
متن کاملRecoupled polarization transfer heteronuclear 1H-13C multiple-quantum correlation in solids under ultra-fast MAS.
A new approach for high-resolution solid-state heteronuclear multiple-quantum MAS NMR spectroscopy of dipolar-coupled spin-12 nuclei is introduced. The method is a heteronuclear chemical shift correlation technique of abundant spins, like 1H with rare spins, like 13C in natural abundance. High resolution is provided by ultra-fast MAS and high magnetic fields, high sensitivity being ensured by a...
متن کامل13C–13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination
A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as C–C systems under very fast magic angle spinning ~MAS! in solid-state nuclear magnetic resonance ~NMR! spectroscopy. The presented technique, finite pulse rf driven recoupling ~fpRFDR!, restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase...
متن کاملTriple oscillating field technique for accurate measurements of couplings in homonuclear spin systems
We present a new concept for homonuclear dipolar recoupling in magic-angle-spinning (MAS) solid-state NMR experiments which avoids the problem of dipolar truncation. This is accomplished through the introduction of a new NMR pulse sequence design principle: the triple oscillating field technique. We demonstrate this technique as an efficient means to accomplish broadband dipolar recoupling of h...
متن کاملREDOR-based heteronuclear dipolar correlation experiments in multi-spin systems: rotor-encoding, directing, and multiple distance and angle determination.
We review a variety of recently developed 1H-X heteronuclear recoupling techniques, which rely only on the homonuclear decoupling efficiency of very-fast magic-angle spinning. All these techniques, which are based on the simple rotational-echo, double-resonance (REDOR) approach for heteronuclear recoupling, are presented in a common context. Advantages and possibilities with respect to the comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance
دوره 146 1 شماره
صفحات -
تاریخ انتشار 2000